绝缘胶可以分成热塑性胶和热固性胶。前者用于工作温度不高、机械强度较小的场合,如用于浇注电缆接头;后者一般由树脂、固化剂、增韧剂、稀释剂、填料(或无填料)等配制而成。
热固性胶按其固化方式分为热固型(加热固化)、晾固型(常温下经一定时间后固化)、光固型和触变性几类;
按电工中的应用方式,可分为粘合剂和浸渍剂、浇铸胶、包封胶等;
按主体树脂的组成,可分为聚酯、环氧、聚氨酯、聚丁二烯酸、有机硅、聚酯亚胺及聚酰亚胺等。
按用途可分为电器浇注胶和电缆浇注胶。
在LED使用过程中,辐射复合产生的光子在向外发射时产生的损失,主要包括三个方面:
1、芯片内部结构缺陷以及材料的吸收;
2、光子在出射界面由于折射率差引起的反射损失;
3、以及由于入射角大于全反射临界角而引起的全反射损失。
因此,很多光线无法从芯片中出射到外部。通过在芯片表面涂覆一层折射率相对较高的硅胶,处于芯片和空气之间,从而有效减少了光子在界面的损失,提高了取光效率。此外,硅胶的作用还包括对芯片进行机械保护,应力释放,并作为一种光导结构,加强散热,以降低芯片结温,提高LED性能。为提高LED封装的可靠性,硅胶还具有低吸湿性、低应力、耐老化等特性。目前常用的灌封胶包括环氧树脂和硅胶。研究表明,提高硅胶折射率可有效减少折射率物理屏障带来的光子损失,提高外量子效率,但硅胶性能受环境温度影响较大。随着温度升高,硅胶内部的热应力加大,导致硅胶的折射率降低,从而影响LED光效和光强分布。然而,硅胶的综合性能明显优于环氧树脂,在大功率LED封装中得到广泛应用。
化学键形成理论:
化学键理论认为胶粘剂与被粘物分子之间除相互作用力外,有时还有化学键产生,例如硫化橡胶与镀铜金属的胶接界面、偶联剂对胶接的作用、异氰酸酯对金属与橡胶的胶接界面等的研究,均证明有化学键的生成。化学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键必须满足一定的量子化`件,所以不可能做到使胶粘剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要比分子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。
特点:
1. 单组分, 粘度适中, 储存稳定性好;
2. 不变色, 在广泛温度范围内保持稳定性;
3. 粘结强度高, 出光效率高, 适于要求高亮度的产品;
4. 工作时间长, 绝缘性能好。
四、 固化条件
170℃/60min
五、 使用说明
将本产品取出适量, 在室温下解冻约 60 分钟, 注入点胶工具内。 将解冻后
的固晶胶于 24 小时内用完。
六、 注意事项
1. 请将产品储存于-15℃, 保质期为六个月;
2. 操作及固化过程, 应避免接触包含 N, S, P, Sn,等化合物, 以防止出现催化剂
中毒而不能固化的现象。